Pump systems are large consumers of electricity and their operation will always have an impact of the price of the final product or service. A pump that is matched to the application will contribute to energy savings because its performance is tailored to the needs of the system. Selecting an oversized pump in the belief that one day it will become useful if production is increased or for safety reasons is a false economy. Similarly, running a pump without any checks on component wear and maintenance will reduce operating life and increase operating costs over the medium to long term.
It is inevitable that pumps will display signs of wear, as it is almost impossible to design a pump that is free from operational deterioration. Wear will have an adverse influence on the performance of the pump, causing mechanical losses, leakage and energy (hydraulic) losses. Components most likely to be affected are bearings, mechanical seals, wear rings, rotating elements and the shaft. Then there is the matter of the internal surfaces which can be subjected to corrosion and erosion by the pumped fluid. Surface conditions will have the greatest impact on energy losses.
The issue of equipment operating lifetime and downtime costs are issues that are receiving long-overdue attention within all areas of processing and manufacturing. Whereas at one time only the initial investment cost was the main factor to be considered in selecting pumps, lifetime costs are now very much a part of the specification process. It is a fact of life that deferring pump maintenance is often used as a means of reducing costs, but this can be a false economy. Not only can the life of the pump be reduced, worn or damaged parts will affect operating efficiency and this will inevitably impact on other operations in the production/processing cycle. Pump failure, due to lack of regular inspection and maintenance, can lead to plant shutdown and excessive down-time costs.
The best way of ensuring trouble free and low maintenance pump operations is to invest in careful pump selection and proper installation at the outset and then to monitor changes in performance at regular intervals. If the pump has been sized for the application, dynamically balanced, installed on robust foundations in order to avoid vibration and operated in the correct manner appropriate to the application then a major failure should never be experienced. This may add costs to the initial investment, but over the long term the investment will be paid back through energy efficiency, low downtime and reduced maintenance costs. Unfortunately not all pumps are operated to their best efficiency point or they are left to operate unattended for long periods, so when the pump does eventually crash it is either replaced or fitted with replacement parts without any investigation as the causes of the failure.
There is of course an argument that puts forward the case for restricting planned and preventative maintenance. In other words; 'if it ain't broke, don't fix it'. Too much maintenance intervention can result in damage to components when they are removed and reinstalled. This is particularly apt where the mechanical seal is removed. Misalignment when the mechanical seal is being reinstalled will cause excessive movement and eventual failure of the seal's faces.
Striking a balance between preventative and condition-based maintenance lies in careful monitoring of the pump performance, so that if any symptoms of a problem are noted action can be taken that prevents total pump failure. The pump should only be taken out of service for maintenance after a detailed study of the symptoms and causes has been carried out. If there has been physical or mechanical damage of the pump's components, then a review of the process operation need to be undertaken in order to identify the cause of the damage.
Preventive, predictive, and prevention/pro-active maintenance practices generally require the pump operator to have an in-house team of qualified employees or to have maintenance contracts with the pump manufacturer. However, this is not always feasible and that is where outsourcing this work to a knowledgeable contractor who can work closely with the maintenance personnel on determining failure and then assist in the repairs or design changes if these are required.
When the AxFlow Service Base is called in to provide both on-site or off-site maintenance and repair, it is standard procedure to examine the pump in detail and to discuss with the customer the application and operating conditions. In this way the Company is able to provide a wholly effective solution to the problem and give a guarantee on its work. AxFlow recognises the importance of planned maintenance and offers all its customers this service, which is also supported by a 24-hour call-out service. Where feasible, remedial work is carried out at the customer's premises and typically this will involve identifying the problem if there has been a pump failure.
When called in for a pump refurbishment project the first challenge is not knowing what the condition of the internal components will be until the complete unit is stripped down. Externally the pumps may look to be either in a reasonable state or not worthy of being rescued. A thorough examination of the pump in its operating environment will reveal the cause of the failure and establish whether or not the pump can be repaired in-situ. AxFlow's engineers have a check list of actions that are adhered to during the disassembly process and it is this procedure that is crucial to identifying where problems lie.
According to Tom Cooper, Service Base Manager, the goal is to get the customer back up and running as quickly as possible, but not at the expense of creating further problems that might arise in the future. Pump replacement may at first seem the easiest option, but this can be costly for the customer and may not always be the best long term solution. This approach is illustrated by projects undertaken where the actual pumps in service were no longer manufactured. During 2010, AxFlow was involved in the refurbishment of the four Gwynnes 24-inch and 48-inch mixed-flow vertical land drainage pumps operating at the East Hull pumping station since 1949.
An external inspection indicated that the pumps were old and in need of replacement and had exceeded their design life capacity. In late 2009 an on-site evaluation of all four pumps in the East Hull works and recommendations made as to what work would need to be undertaken to put them all back into a reliable and efficient operating condition. When later removed from service for a thorough evaluation it was clear that they could be renovated to a standard that would meet the future requirements of the Environment Agency. Most importantly, AxFlow was able to undertake the renovation project in a time frame quicker than a full replacement programme and at a more competitive price.
The key to the success of this contract was that AxFlow were able meet the Environment Agency's request to work on all four pumps at once, as opposed to instigating a rolling programme. Because of the size of the pumps, weighing up to 12 tons, it was necessary to dismantle them on site then rebuild them back in AxFlow's workshop once the refurbishment jobs had been undertaken to check tolerance and dimensions. The pumps had to be dismantled again for return to the pumping station and once again be rebuilt on site. From first day onsite through to having the pumps re-installed and ready to run took just 12-14 weeks